Search results
Results From The WOW.Com Content Network
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
The 3-sphere is the boundary of a -ball in four-dimensional space. The -sphere is the boundary of an -ball. Given a Cartesian coordinate system, the unit -sphere of radius can be defined as:
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where . ρ is the length of the vector projected onto the xy-plane,; φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π),
In vector notation, the equations are as follows: . Equation for a sphere ‖ ‖ = : points on the sphere : center point : radius of the sphere; Equation for a line starting at
The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized mathematics by allowing the expression of problems of geometry in terms of algebra and calculus.
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
The red oblate spheroid (flattened sphere) corresponds to μ = 1, whereas the blue half-hyperboloid corresponds to ν = 45°. The azimuth φ = −60° measures the dihedral angle between the green xz half-plane and the yellow half-plane that includes the point P. The Cartesian coordinates of P are roughly (1.09, −1.89, 1.66).
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.