When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    There exist infinitely many Pythagorean triples in which the hypotenuse and the longest leg differ by exactly one. Such triples are necessarily primitive and have the form (2n + 1, 2n 2 + 2n, 2n 2 + 2n +1). This results from Euclid's formula by remarking that the condition implies that the triple is primitive and must verify (m 2 + n 2) - 2mn = 1.

  3. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.

  4. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  6. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 10 describes Pythagorean triangles with a side or area that is a square or cube, connecting this problem to Fermat's Last Theorem. After a chapter on Heronian triangles, Chapter 12 returns to this theme, discussing triangles whose hypotenuse

  7. Pythagoreanism - Wikipedia

    en.wikipedia.org/wiki/Pythagoreanism

    The Pythagorean schools and societies died out from the 4th century BC. Pythagorean philosophers continued to practice, albeit no organised communities were established. [14] According to surviving sources by the Neopythagorean philosopher Nicomachus, Philolaus was the successor of Pythagoras. [16] According to Cicero (de Orat.

  8. Plimpton 322 - Wikipedia

    en.wikipedia.org/wiki/Plimpton_322

    This table lists two of the three numbers in what are now called Pythagorean triples, i.e., integers a, b, and c satisfying a 2 + b 2 = c 2. From a modern perspective, a method for constructing such triples is a significant early achievement, known long before the Greek and Indian mathematicians discovered solutions to this problem.

  9. Brahmagupta - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta

    In chapter twelve of his Brāhmasphuṭasiddhānta, Brahmagupta provides a formula useful for generating Pythagorean triples: 12.39. The height of a mountain multiplied by a given multiplier is the distance to a city; it is not erased. When it is divided by the multiplier increased by two it is the leap of one of the two who make the same journey.