Search results
Results From The WOW.Com Content Network
The formation of patterns in the growth of bacterial colonies has extensively been studied experimentally. Resulting morphologies appear to depend on the growth conditions. They include well known morphologies such as dense branched morphology (DBM) or diffusion-limited aggregation (DLA), but much complex patterns and temporal behaviour can be fou
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
[31] [32] [33] Bacteria may alter their shape by simpler transitions from rod to coccoid (and vice versa) as in Escherichia coli, [34] by more complex transitions while establishing multicellularity [31] or by the development of specialized cells, structures or appendages where the population presents a pleomorphic lifestyle. [35]
The bacteria tend to be seed-borne, and are dispersed between plants by rain splash. [18] Although it is a plant pathogen, it can also live as a saprotroph in the phyllosphere when conditions are not favourable for disease. [19] Some saprotrophic strains of P. syringae have been used as biocontrol agents against postharvest rots. [20]
The bacterial DNA is not packaged using histones to form chromatin as in eukaryotes but instead exists as a highly compact supercoiled structure, the precise nature of which remains unclear. [6] Most bacterial chromosomes are circular, although some examples of linear chromosomes exist (e.g. Borrelia burgdorferi). Usually, a single bacterial ...
Paenibacillus vortex is a species of pattern-forming bacteria, first discovered in the early 1990s by Eshel Ben-Jacob's group at Tel Aviv University. [1] It is a social microorganism that forms colonies with complex and dynamic architectures.
Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.
Bacterial motility is the ability of bacteria to move independently using metabolic energy. Most motility mechanisms that evolved among bacteria also evolved in parallel among the archaea. Most rod-shaped bacteria can move using their own power, which allows colonization of new environments and discovery of new resources for survival.