Search results
Results From The WOW.Com Content Network
A statically indeterminate structure can only be analyzed by including further information like material properties and deflections. Numerically, this can be achieved by using matrix structural analyses, finite element method (FEM) or the moment distribution method ( Hardy Cross ) .
A statically determinate structure can be fully analysed using only consideration of equilibrium, from Newton's Laws of Motion. A statically indeterminate structure has more unknowns than equilibrium considerations can supply equations for (see simultaneous equations ).
The structure is statically determinate. Therefore, all influence lines will be straight lines. Parts (b) and (c) of the figure shows the influence lines for the reactions in the y-direction. Releasing the vertical reaction for A allows the beam to rotate to Δ. Likewise for part (c). Δ is typically taken as positive upwards.
Here the conjugate beam has a free end, since at this end there is zero shear and zero moment. Corresponding real and conjugate supports are shown below. Note that, as a rule, neglecting axial forces, statically determinate real beams have statically determinate conjugate beams; and statically indeterminate real beams have unstable conjugate ...
The moment distribution method is a structural analysis method for statically indeterminate beams and frames developed by Hardy Cross. It was published in 1930 in an ASCE journal. [1] The method only accounts for flexural effects and ignores axial and shear effects.
A statically determinate beam, bending (sagging) under a uniformly distributed load. A beam is a structural element that primarily resists loads applied laterally across the beam's axis (an element designed to carry a load pushing parallel to its axis would be a strut or column).
Its influence lines for four different functions: (b) the reaction at the left support (denoted A), (c) the reaction at the right support (denoted C), (d) one for shear at a point B along the beam, and (e) one for moment also at point B. Figure 2: The change in Bending Moment in a statically determinate Beam as a unit force moves from one end ...
When =, the truss is said to be statically determinate, because the (m+3) internal member forces and support reactions can then be completely determined by 2j equilibrium equations, once we know the external loads and the geometry of the truss. Given a certain number of joints, this is the minimum number of members, in the sense that if any ...