Search results
Results From The WOW.Com Content Network
Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance. The sound localization mechanisms of the mammalian auditory system have been extensively studied. The auditory system uses several cues for sound source localization, including time difference and level difference (or ...
Swedish soldiers operating an acoustic locator in 1940. Acoustic location is a method of determining the position of an object or sound source by using sound waves. Location can take place in gases (such as the atmosphere), liquids (such as water), and in solids (such as in the earth).
3D sound reconstruction is the application of reconstruction techniques to 3D sound localization technology. These methods of reconstructing three- dimensional sound are used to recreate sounds to match natural environments and provide spatial cues of the sound source.
3D sound localization refers to an acoustic technology that is used to locate the source of a sound in a three-dimensional space.The source location is usually determined by the direction of the incoming sound waves (horizontal and vertical angles) and the distance between the source and sensors.
Sound localization is the ability to correctly identify the directional location of sounds, typically quantified in terms of azimuth (angle around the horizontal plane) and elevation (defined in various ways as an angle from the horizontal plane). The time, intensity, and spectral differences in the sounds arriving at the two ears are used in ...
(sound source: 100 ms white noise from 90° azimuth, 0° elevation) The interaural time difference (or ITD) when concerning humans or animals, is the difference in arrival time of a sound between two ears. It is important in the localization of sounds, as it provides a cue to the direction or angle of the sound source from the head. If a signal ...
When localizing 3D sound in spatial domain, one could take into account that the incoming sound signal could be reflected, diffracted and scattered by the upper torso of the human which consists of shoulders, head and pinnae. Localization also depends on the direction of the sound source. [5]
Then the direct sound of the sound source prevails at least in some frequency ranges and the direction of the sound source can be determined. Some milliseconds later, when the sound of the wall reflections arrives, a sound source localization seems no more to be possible.