Search results
Results From The WOW.Com Content Network
This is also called a "change of variable" and is in practice used to generate a random variable of arbitrary shape f g(X) = f Y using a known (for instance, uniform) random number generator. It is tempting to think that in order to find the expected value E(g(X)), one must first find the probability density f g(X) of the new random variable Y ...
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.
Through a change of coordinates (a rotation of axes and a translation of axes), equation can be put into a standard form, which is usually easier to work with. It is always possible to rotate the coordinates at a specific angle so as to eliminate the x′y′ term. Substituting equations and into equation , we obtain
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...
Again assume that y = f(x) is differentiable, but now let Δx be a nonzero standard real number. Then the same equation Δ y = f ′ ( x ) Δ x + ε Δ x {\displaystyle \Delta y=f'(x)\,\Delta x+\varepsilon \,\Delta x} holds with the same definition of Δ y , but instead of ε being infinitesimal, we have lim Δ x → 0 ε = 0 {\displaystyle ...
The formula for change (or "the change formula") provides a model to assess the relative strengths affecting the likely success of organisational change programs. The formula was created by David Gleicher while he was working at management consultants Arthur D. Little in the early 1960s, [1] refined by Kathie Dannemiller in the 1980s, [2] and further developed by Steve Cady.
If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.