Search results
Results From The WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
The polyiodides are a class of polyhalogen anions composed entirely of iodine atoms. [1] [2] The most common member is the triiodide ion, I −3.Other known larger polyiodides include [I 4] 2−, [I 5] −, [I 6] 2−, [I 7] −, [I 8] 2−, [I 9] −, [I 10] 2−, [I 10] 4−, [I 11] 3−, [I 12] 2−, [I 13] 3−, [I 14] 4-, [I 16] 2−, [I 22] 4−, [I 26] 3−, [I 26] 4−, [I 28] 4− and ...
Intel Core i3 and i5 processors, released in January 2010 [108] Intel 6-core processor, codenamed Gulftown [109] Intel i7-970, was released in late July 2010, priced at approximately US$900; AMD FX Series processors, codenamed Zambezi and based on AMD's Bulldozer architecture, were released in October 2011. The technology used a 32 nm SOI ...
Before the Coffee Lake architecture, most Xeon and all desktop and mobile Core i3 and i7 supported hyper-threading while only dual-core mobile i5's supported it. Post Coffee Lake, increased core counts meant hyper-threading is not needed for Core i3, as it then replaced the i5 with four physical cores on the desktop platform. Core i7, on the ...
The same applies to the Intel Core i3, Core i5 and Core i7-800 series, which are used on the LGA 1156 platforms (e.g., Intel P55). According to Intel, a Core i7 with DDR3 operating at 1066 MHz will offer peak data transfer rates of 25.6 GB/s when operating in triple-channel interleaved mode.
The following exergonic equilibrium gives rise to the triiodide ion: . I 2 + I − ⇌ I − 3. In this reaction, iodide is viewed as a Lewis base, and the iodine is a Lewis acid.The process is analogous to the reaction of S 8 with sodium sulfide (which forms polysulfides) except that the higher polyiodides have branched structures.
Bottom view of a Core i7-2600K. Sandy Bridge is the codename for Intel's 32 nm microarchitecture used in the second generation of the Intel Core processors (Core i7, i5, i3).The Sandy Bridge microarchitecture is the successor to Nehalem and Westmere microarchitecture.
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors (Core i7, i5, i3). Ivy Bridge is a die shrink to 22 nm process based on FinFET ("3D") Tri-Gate transistors , from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model .