Search results
Results From The WOW.Com Content Network
For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the phrase does not imply that the union set is a finite set ...
The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The open sets and closed sets of any topological space are closed under both unions and intersections. [1] On the real line R, the family of sets consisting of the empty set and all finite unions of half-open intervals of the form (a, b], with a, b ∈ R is a ring in the measure-theoretic sense.
By De Morgan's laws, the complement of the intersection is a union of two disjoint open sets. By the connectedness of the real line there must be something between them. This shows that the intersection of (even an uncountable number of) nested, closed, and bounded intervals is nonempty.
The answer seems to be every possible . When is empty, the condition given above is an example of a vacuous truth. So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist.
Two sets are said to be almost disjoint sets if their intersection is small in some sense. For instance, two infinite sets whose intersection is a finite set may be said to be almost disjoint. [3] In topology, there are various notions of separated sets with more strict conditions than disjointness.