When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The union of two intervals is an interval if and only if they have a non-empty intersection or an open end-point of one interval is a closed end-point of the other, for example (,) [,] = (,]. If R {\displaystyle \mathbb {R} } is viewed as a metric space , its open balls are the open bounded intervals ( c + r , c − r ) , and its closed balls ...

  3. Ring of sets - Wikipedia

    en.wikipedia.org/wiki/Ring_of_sets

    The open sets and closed sets of any topological space are closed under both unions and intersections. [1] On the real line R, the family of sets consisting of the empty set and all finite unions of half-open intervals of the form (a, b], with a, b ∈ R is a ring in the measure-theoretic sense.

  4. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero (⁠ ⁠) sets and it is by definition equal to the empty set.

  5. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  6. Open set - Wikipedia

    en.wikipedia.org/wiki/Open_set

    For example, the intersection of all intervals of the form (/, /), where is a positive integer, is the set {} which is not open in the real line. A metric space is a topological space, whose topology consists of the collection of all subsets that are unions of open balls.

  7. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    The two equivalent definitions are as follows. Using union and intersection: define [1] [2] = and = If these two sets are equal, then the set-theoretic limit of the sequence exists and is equal to that common set. Either set as described above can be used to get the limit, and there may be other means to get the limit as well.

  8. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    By De Morgan's laws, the complement of the intersection is a union of two disjoint open sets. By the connectedness of the real line there must be something between them. This shows that the intersection of (even an uncountable number of) nested, closed, and bounded intervals is nonempty.

  9. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    To investigate the left distributivity of set subtraction over unions or intersections, consider how the sets involved in (both of) De Morgan's laws are all related: () = = () always holds (the equalities on the left and right are De Morgan's laws) but equality is not guaranteed in general (that is, the containment might be strict).