Search results
Results From The WOW.Com Content Network
A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten (1 ≤ | m | < 10).
So for example if n is 5, the index cannot be 15 even though this divides 5!, because there is no subgroup of order 15 in S 5. In the case of n = 2 this gives the rather obvious result that a subgroup H of index 2 is a normal subgroup, because the normal subgroup of H must have index 2 in G and therefore be identical to H .
Quadratic equations of the form + + = can be solved by first reducing the equation to the form + = (where = / and = /), and then aligning the index ("1") of the C scale to the value on the D scale. The cursor is then moved along the rule until a position is found where the numbers on the CI and D scales add up to p {\displaystyle p} .
If n is even, a complex number's nth roots, of which there are an even number, come in additive inverse pairs, so that if a number r 1 is one of the nth roots then r 2 = –r 1 is another. This is because raising the latter's coefficient –1 to the n th power for even n yields 1: that is, (– r 1 ) n = (–1) n × r 1 n = r 1 n .
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.