When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points.

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ(x) = x + 1/x, which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits

  4. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The last expression is the logarithmic mean. = (⁡ >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function

  5. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  6. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    It is named after Carl Johannes Thomae, but has many other names: the popcorn function, the raindrop function, the countable cloud function, the modified Dirichlet function, the ruler function (not to be confused with the integer ruler function), [2] the Riemann function, or the Stars over Babylon (John Horton Conway's name). [3]

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.

  8. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    A Darboux function is a real-valued function ƒ which has the "intermediate value property": for any two values a and b in the domain of ƒ, and any y between ƒ(a) and ƒ(b), there is some c between a and b with ƒ(c) = y. [4] By the intermediate value theorem, every continuous function on a real interval is a Darboux function. Darboux's ...

  9. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    For example, we learn that if ƒ is continuous at t, then the Fourier series of ƒ cannot converge to a value different from ƒ(t). It may either converge to ƒ ( t ) or diverge. This is because, if S N ( f ; t ) {\displaystyle S_{N}(f;t)} converges to some value x , it is also summable to it, so from the first summability property above, x ...