Search results
Results From The WOW.Com Content Network
Length (system unit unit-code symbol or abbrev. notes sample default conversion combination output units SI: megametre: Mm Mm US spelling: megameter 1.0 Mm (620 mi) kilometre
An arc of a circle with the same length as the radius of that circle corresponds to an angle of 1 radian. A full circle corresponds to a full turn, or approximately 6.28 radians, which is expressed here using the Greek letter tau (τ). Some special angles in radians, stated in terms of 𝜏. A comparison of angles expressed in degrees and radians.
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [ 4 ] It is not an SI unit —the SI unit of angular measure is the radian —but it is mentioned in the SI brochure as an accepted unit . [ 5 ]
Angular sizes measured in degrees are useful for larger patches of sky. (For example, the three stars of the Belt cover about 4.5° of angular size.) However, much finer units are needed to measure the angular sizes of galaxies, nebulae, or other objects of the night sky. Degrees, therefore, are subdivided as follows: 360 degrees (°) in a full ...
The angle subtended at the center of a circle by an arc whose length is equal to the circle's radius. One full revolution encompasses 2π radians. = 1 rad sextant: ≡ 60° ≈ 1.047 198 rad: sign: ≡ 30° ≈ 0.523 599 rad
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...
Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula. Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees ...