Ad
related to: what is mu in electromagnetism science definition biology for dummies
Search results
Results From The WOW.Com Content Network
In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field.Permeability is typically represented by the (italicized) Greek letter μ.
In the old "electromagnetic (emu)" system of units, defined in the late 19th century, k m was chosen to be a pure number equal to 2, distance was measured in centimetres, force was measured in the cgs unit dyne, and the currents defined by this equation were measured in the "electromagnetic unit (emu) of current", the "abampere". A practical ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
Thus, mu "mesons" were not mesons at all, in the new sense and use of the term meson used with the quark model of particle structure. With this change in definition, the term mu meson was abandoned, and replaced whenever possible with the modern term muon , making the term "mu meson" only a historical footnote.
As an example, quantum electrodynamics contains a Dirac field ψ representing the electron field and a vector field A μ representing the electromagnetic field (photon field). (Despite its name, the quantum electromagnetic "field" actually corresponds to the classical electromagnetic four-potential, rather than the classical electric and ...
Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism.
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally ...
Biomagnetism is the phenomenon of magnetic fields produced by living organisms; it is a subset of bioelectromagnetism.In contrast, organisms' use of magnetism in navigation is magnetoception and the study of the magnetic fields' effects on organisms is magnetobiology.