Search results
Results From The WOW.Com Content Network
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
The law of total variance is a fundamental result in probability theory that expresses the variance of a ... the law of iterated ... (Eve's Law)" (PDF). stat110 ...
Language links are at the top of the page across from the title.
The law of total covariance can be proved using the law of total expectation: First, (,) = [] [] [] from a simple standard identity on covariances. Then we apply the law of total expectation by conditioning on the random variable Z:
Suppose there is data from a classroom of 200 students on the amount of time studied (X) and the percentage of correct answers (Y). [4] Assuming that X and Y are discrete random variables, the joint distribution of X and Y can be described by listing all the possible values of p(x i,y j), as shown in Table.3.
The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem. There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:
The Principles and Standards for School Mathematics was developed by the NCTM. The NCTM's stated intent was to improve mathematics education. The contents were based on surveys of existing curriculum materials, curricula and policies from many countries, educational research publications, and government agencies such as the U.S. National Science Foundation. [3]
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.