Ad
related to: ky ultragel vs liquid carbon dioxide decaffeination formula
Search results
Results From The WOW.Com Content Network
Jets of liquid carbon dioxide. Liquid carbon dioxide is the liquid state of carbon dioxide (CO 2), which cannot occur under atmospheric pressure.It can only exist at a pressure above 5.1 atm (5.2 bar; 75 psi), under 31.1 °C (88.0 °F) (temperature of critical point) and above −56.6 °C (−69.9 °F) (temperature of triple point). [1]
Fluids which do see industrial application of supercritical drying include carbon dioxide (critical point 304.25 K at 7.39 MPa or 31.1 °C at 1072 psi) and freon (≈300 K at 3.5–4 MPa or 25–0 °C at 500–600 psi). Nitrous oxide has similar physical behavior to carbon dioxide, but is a powerful oxidizer in its
Decaffeination is the removal of caffeine from coffee beans, cocoa, tea leaves, and other caffeine-containing materials. Decaffeinated products are commonly termed by the abbreviation decaf. To ensure product quality, manufacturers are required to test the newly decaffeinated coffee beans to make sure that caffeine concentration is relatively low.
One alternative, the subcritical carbon dioxide method, uses nontoxic high-pressure carbon dioxide to remove caffeine. Like the traditional method, this one is also hard on coffee beans , causing ...
Starbucks, for example, has three ways to remove caffeine: the natural decaffeination process, which uses liquid carbon dioxide forced into stainless steel tanks at high pressure, drawing out and ...
SCFs are used as a substitute for organic solvents in a range of industrial and laboratory processes, most commonly carbon dioxide for decaffeination and water for steam boilers for power generation. Some substances are soluble in the supercritical state of a solvent (e.g. carbon dioxide) but insoluble in the gaseous or liquid state—or vice ...
Carbon dioxide (CO 2) is usually pumped as a liquid, usually below 5 °C (41 °F) and a pressure of about 50 bar. The solvent is pumped as a liquid as it is then almost incompressible; if it were pumped as a supercritical fluid, much of the pump stroke would be "used up" in compressing the fluid, rather than pumping it.
A variant on this process involves the direct injection of supercritical carbon dioxide into the pressure vessel containing the aerogel. The result of either process exchanges the initial liquid from the gel with carbon dioxide, without allowing the gel structure to collapse or lose volume. [25]