When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  4. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  5. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  6. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The eigenvalue is approximated by r T (X T X) r, which is the Rayleigh quotient on the unit vector r for the covariance matrix X T X . If the largest singular value is well separated from the next largest one, the vector r gets close to the first principal component of X within the number of iterations c , which is small relative to p , at the ...

  7. Complex Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_Wishart_distribution

    It is the distribution of times the sample Hermitian covariance matrix of zero-mean independent Gaussian random variables. It has support for Hermitian positive definite matrices. [1] The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let

  8. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    The main calculation is evaluation of a function of the product D T (D X) of the covariance matrix D T D and the block-vector X that iteratively approximates the desired singular vectors. PCA needs the largest eigenvalues of the covariance matrix, while LOBPCG is typically implemented to calculate the smallest ones.

  9. James–Stein estimator - Wikipedia

    en.wikipedia.org/wiki/James–Stein_estimator

    The work of James and Stein has been extended to the case of a general measurement covariance matrix, i.e., where measurements may be statistically dependent and may have differing variances. [9] A similar dominating estimator can be constructed, with a suitably generalized dominance condition.