When.com Web Search

  1. Ad

    related to: calculate beam bending moment by section

Search results

  1. Results From The WOW.Com Content Network
  2. Bending moment - Wikipedia

    en.wikipedia.org/wiki/Bending_moment

    Though bending moments have been used to determine the stress states in arbitrary shaped structures, the physical interpretation of the computed stresses is problematic. However, physical interpretations of bending moments in beams and plates have a straightforward interpretation as the stress resultants in a cross-section of the structural ...

  3. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    This results in a constant bending moment between the two supports. Consequently, a shear-free zone is created, where the specimen is subjected only to bending. This has the advantage that no additional shear force acts on the specimen, unlike in the 3-point bending test. [6] The bending modulus for a flat specimen is calculated as follows:

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    Using this equation it is possible to calculate the bending stress at any point on the beam cross section regardless of moment orientation or cross-sectional shape. Note that M y , M z , I y , I z , I y z {\displaystyle M_{y},M_{z},I_{y},I_{z},I_{yz}} do not change from one point to another on the cross section.

  5. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic, or full moment, strength and is larger than the elastic section modulus, reflecting the section's strength beyond the elastic range. [1]

  6. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  7. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    As a consequence the three traction components that vary from point to point in a cross-section can be replaced with a set of resultant forces and resultant moments. These are the stress resultants (also called membrane forces, shear forces, and bending moment) that may be used to determine the detailed stress state in the structural element. A ...

  8. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  9. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    Although the moment () and displacement generally result from external loads and may vary along the length of the beam or rod, the flexural rigidity (defined as ) is a property of the beam itself and is generally constant for prismatic members. However, in cases of non-prismatic members, such as the case of the tapered beams or columns or ...