Search results
Results From The WOW.Com Content Network
The input impedance of an infinite line is equal to the characteristic impedance since the transmitted wave is never reflected back from the end. Equivalently: The characteristic impedance of a line is that impedance which, when terminating an arbitrary length of line at its output, produces an input impedance of equal value. This is so because ...
In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion is P T and the power received by the load after insertion is P R, then the insertion loss in decibels ...
Stripline illustrating the incremental Wheeler inductance rule. The incremental inductance rule, attributed to Harold Alden Wheeler [1] by Gupta [2]: 101 and others [3]: 80 is a formula used to compute skin effect resistance and internal inductance in parallel transmission lines when the frequency is high enough that the skin effect is fully developed.
In the context of S-parameters, scattering refers to the way in which the traveling currents and voltages in a transmission line are affected when they meet a discontinuity caused by the insertion of a network into the transmission line. This is equivalent to the wave meeting an impedance differing from the line's characteristic impedance.
In the presence of losses the solution of the telegrapher's equation has both damping and dispersion, as visible when compared with the solution of a lossless wave equation. When the loss elements and are too substantial to ignore, the differential equations describing the elementary segment of line are (,) = (,) (,), (,) = (,) (,).
One parameter in the passband that is usually set for filters is the maximum insertion loss. For impedance matching networks, a better match can be obtained by also setting a minimum loss. That is, the gain never rises to unity at any point. [48] Time-delay networks can be designed by network synthesis with filter-like structures.
Combine, hairpin, parallel-coupled line, step impedance and stub impedance are the designs of experimenting the band pass filter to achieve low insertion loss with a compact size. [5] The necessity of adopting asymmetric frequency response is in behalf of reducing the number of resonators, insertion loss, size and cost of circuit production.
An equivalent impedance is an equivalent circuit of an electrical network of impedance elements [note 2] which presents the same impedance between all pairs of terminals [note 10] as did the given network. This article describes mathematical transformations between some passive, linear impedance networks commonly found in electronic circuits.