Search results
Results From The WOW.Com Content Network
"Longitudinal waves" and "transverse waves" have been abbreviated by some authors as "L-waves" and "T-waves", respectively, for their own convenience. [1] While these two abbreviations have specific meanings in seismology (L-wave for Love wave [2] or long wave [3]) and electrocardiography (see T wave), some authors chose to use "ℓ-waves" (lowercase 'L') and "t-waves" instead, although they ...
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
Wave profile displacement Along propagation direction, distance travelled (path length) by one wave from the source point r 0 to any point in space d (for longitudinal or transverse waves) L, d, r ^ m [L] Phase angle: δ, ε, φ: rad
The first six longitudinal modes of a plane-parallel cavity. A longitudinal mode of a resonant cavity is a particular standing wave pattern formed by waves confined in the cavity. The longitudinal modes correspond to the wavelengths of the wave which are reinforced by constructive interference after many reflections from the cavity's reflecting ...
A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves ...
In condensed matter physics, the Lyddane–Sachs–Teller relation (or LST relation) determines the ratio of the natural frequency of longitudinal optic lattice vibrations () of an ionic crystal to the natural frequency of the transverse optical lattice vibration for long wavelengths (zero wavevector).
By comparison with vector wave equations, the scalar wave equation can be seen as a special case of the vector wave equations; in the Cartesian coordinate system, the scalar wave equation is the equation to be satisfied by each component (for each coordinate axis, such as the x component for the x axis) of a vector wave without sources of waves ...
Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy.