Ads
related to: explain the function of enzymes
Search results
Results From The WOW.Com Content Network
Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.
Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]
Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Most enzymes are proteins, and most such processes are chemical reactions.
A restriction enzyme, restriction endonuclease, REase, ENase or restrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. [1] [2] [3] Restriction enzymes are one class of the broader endonuclease group of enzymes.
Enzyme kinetics is the study of ... RNA-based catalysts such as ribozymes and ribosomes are essential to many cellular functions, ... it helps explain how enzymes ...
In a) the allosteric enzyme functions normally. In b), it is inhibited. This type of enzymes presents two binding sites: the substrate of the enzyme and the effectors. Effectors are small molecules which modulate the enzyme activity; they function through reversible, non-covalent binding of a regulatory metabolite in the allosteric site (which ...
TIGAR, a p53 induced enzyme, is responsible for the regulation of phosphofructokinase and acts to protect against oxidative stress. [38] TIGAR is a single enzyme with dual function that regulates F2,6BP. It can behave as a phosphatase (fructuose-2,6-bisphosphatase) which cleaves the phosphate at carbon-2 producing F6P.