Search results
Results From The WOW.Com Content Network
Reflection and transmittance for two dielectrics [permanent dead link ] – Mathematica interactive webpage that shows the relations between index of refraction and reflection. A self-contained first-principles derivation of the transmission and reflection probabilities from a multilayer with complex indices of refraction.
The reflection of light from a single interface between two media is described by the Fresnel equations. However, when there are multiple interfaces , such as in the figure, the reflections themselves are also partially transmitted and then partially reflected.
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field. [2] Internal transmittance refers to energy loss by absorption, whereas (total) transmittance is that due to absorption, scattering, reflection ...
A reflection of the incoming field (E) is transmitted at the dielectric boundary to give rE and tE (where r and t are the amplitude reflection and transmission coefficients, respectively). Since there is no absorption this system is reversible, as shown in the second picture (where the direction of the beams has been reversed).
The width of the air gap (or low-refractive-index gap) between the two prisms can be made adjustable, giving higher transmission and lower reflection for a narrower gap, or higher reflection and lower transmission for a wider gap. [60] Optical modulation can be accomplished by means of frustrated TIR with a rapidly variable gap. [61]
When a returning reflection strikes another discontinuity, some of the signal rebounds in the original signal direction, creating multiple echo effects. These forward echoes strike the receiver at different intervals making it difficult for the receiver to accurately detect data values on the signal. The effects can resemble those of jitter.