When.com Web Search

  1. Ads

    related to: q-series math examples problems with solutions video for middle school

Search results

  1. Results From The WOW.Com Content Network
  2. Basic hypergeometric series - Wikipedia

    en.wikipedia.org/wiki/Basic_hypergeometric_series

    In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.

  3. q-analog - Wikipedia

    en.wikipedia.org/wiki/Q-analog

    The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    The q-Pochhammer symbol is a major building block in the construction of q-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series.

  6. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    For example, in most systems of logic (but not in intuitionistic logic) Peirce's law (((P→Q)→P)→P) is a theorem. For classical logic, it can be easily verified with a truth table . The study of mathematical proof is particularly important in logic, and has accumulated to automated theorem proving and formal verification of software.

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Schaum's Outlines - Wikipedia

    en.wikipedia.org/wiki/Schaum's_Outlines

    The "Demystified" series is introductory in nature, for middle and high school students, favoring more in-depth coverage of introductory material at the expense of fewer topics. The "Easy Way" series is a middle ground: more rigorous and detailed than the "Demystified" books, but not as rigorous and terse as the Schaum's series.