When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  3. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    In one dimension, the constitutive equation of the Herschel-Bulkley model after the yield stress has been reached can be written in the form: [3] [4] ˙ =, < = + ˙, where is the shear stress [Pa], the yield stress [Pa], the consistency index [Pa s], ˙ the shear rate [s], and the flow index [dimensionless].

  4. Eddy covariance - Wikipedia

    en.wikipedia.org/wiki/Eddy_covariance

    If these factors, along with the speed are known, we can determine the flux. For example, if one knew how many molecules of water went down with eddies at time 1, and how many molecules went up with eddies at time 2, at the same point, one could calculate the vertical flux of water at this point over this time.

  5. Free molecular flow - Wikipedia

    en.wikipedia.org/wiki/Free_molecular_flow

    Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10 −3 mbar .

  6. Molecular tagging velocimetry - Wikipedia

    en.wikipedia.org/wiki/Molecular_tagging_velocimetry

    This line of tagged molecules is now transported by the fluid flow. To obtain velocity information, images at two instances in time are obtained and analyzed (often by correlation of the image intensities) to determine the displacement. If the flow is three-dimensional or turbulent the line will not only be displaced, it will also be deformed.

  7. Knudsen number - Wikipedia

    en.wikipedia.org/wiki/Knudsen_number

    The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 [ 1 ] and Gotthilf Heinrich Ludwig Hagen , [ 2 ] and published by Hagen in 1839 [ 1 ] and then by Poiseuille in 1840–41 and 1846 ...

  9. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Turbulent flow is defined as the flow in which the system's inertial forces are dominant over the viscous forces. This phenomenon is described by Reynolds number, a unit-less number used to determine when turbulent flow will occur. Conceptually, the Reynolds number is the ratio between inertial forces and viscous forces.