When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    ALGLIB has an implementations in C++ / C# / VBA / Pascal. GSL has a polynomial interpolation code in C; SO has a MATLAB example that demonstrates the algorithm and recreates the first image in this article; Lagrange Method of Interpolation — Notes, PPT, Mathcad, Mathematica, MATLAB, Maple; Lagrange interpolation polynomial on www.math-linux.com

  3. Remez algorithm - Wikipedia

    en.wikipedia.org/wiki/Remez_algorithm

    The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L ∞ sense. [1]

  4. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    We fix the interpolation nodes x 0, ..., x n and an interval [a, b] containing all the interpolation nodes. The process of interpolation maps the function f to a polynomial p. This defines a mapping X from the space C([a, b]) of all continuous functions on [a, b] to itself.

  5. Neville's algorithm - Wikipedia

    en.wikipedia.org/wiki/Neville's_algorithm

    In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.

  6. Lebesgue constant - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_constant

    The process of interpolation maps the function to a polynomial . This defines a mapping from the space C([a, b]) of all continuous functions on [a, b] to itself. The map X is linear and it is a projection on the subspace Π n of polynomials of degree n or less.

  7. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  9. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    The following Python code with the SymPy library will allow for calculation of the values of and to 20 digits of precision: from sympy import * def lag_weights_roots ( n ): x = Symbol ( "x" ) roots = Poly ( laguerre ( n , x )) . all_roots () x_i = [ rt . evalf ( 20 ) for rt in roots ] w_i = [( rt / (( n + 1 ) * laguerre ( n + 1 , rt )) ** 2 ...