Search results
Results From The WOW.Com Content Network
The atomic nucleus is a bound system of protons and neutrons. The spatial extent and shape of the nucleus depend not only on the size and shape of discrete nucleons, but also on the distance between them (the inter-nucleon distance). (Other factors include spin, alignment, orbital motion, and the local nuclear environment (see EMC effect).)
The problem of defining a radius for the atomic nucleus has some similarity to that of defining a radius for the entire atom; neither has well defined boundaries.However, basic liquid drop models of the nucleus imagine a fairly uniform density of nucleons, theoretically giving a more recognizable surface to a nucleus than an atom, the latter being composed of highly diffuse electron clouds ...
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
The atomic nucleus shown expanded more than 10,000 times its size relative to the atom; electrons have no measurable diameter. The Rutherford model is a name for the first model of an atom with a compact nucleus. The concept arose from Ernest Rutherford discovery of the nucleus.
Under some definitions, the value of the radius may depend on the atom's state and context. [1] Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group ...
The radius varies with the location of an atom on the atomic chart, the type of chemical bond, the number of neighboring atoms (coordination number) and a quantum mechanical property known as spin. [70] On the periodic table of the elements, atom size tends to increase when moving down columns, but decrease when moving across rows (left to ...
The liquid drop model is one of the first models of nuclear structure, proposed by Carl Friedrich von Weizsäcker in 1935. [5] It describes the nucleus as a semiclassical fluid made up of neutrons and protons, with an internal repulsive electrostatic force proportional to the number of protons.
Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force. The diameter of the nucleus is in the range of 1.70 fm (1.70 × 10 −15 m [7]) for hydrogen (the diameter of a single proton) to about 11.7 fm for ...