Search results
Results From The WOW.Com Content Network
Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1]
The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]
Relations for other moduli are found in the (λ, G) row of the conversions table at the end of this article. Although the shear modulus, μ, must be positive, the Lamé's first parameter, λ, can be negative, in principle; however, for most materials it is also positive. The parameters are named after Gabriel Lamé.
The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.
G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,
E i is the Young's modulus along axis i; G ij is the shear modulus in direction j on the plane whose normal is in direction i; ν ij is the Poisson ratio that corresponds to a contraction in direction j when an extension is applied in direction i. The Poisson ratio of an orthotropic material is different in each direction (x, y and z). However ...
G is the shear modulus, also called the modulus of rigidity, and is usually given in gigapascals (GPa), lbf/in 2 (psi), or lbf/ft 2 or in ISO units N/mm 2. The product J T G is called the torsional rigidity w T.
It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres.