Search results
Results From The WOW.Com Content Network
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The Taylor series of any polynomial is the polynomial itself.. The Maclaurin series of 1 / 1 − x is the geometric series + + + +. So, by substituting x for 1 − x, the Taylor series of 1 / x at a = 1 is
So we have the series expansion (common factors have been canceled from numerators and denominators): = (+ + + + + +). (After cancellation the numerator and denominator values in OEIS: A092676 and OEIS: A092677 respectively; without cancellation the numerator terms are values in OEIS: A002067.)
In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function: [1]
We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose X t {\displaystyle X_{t}} is an Itô drift-diffusion process that satisfies the stochastic differential equation
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.