Search results
Results From The WOW.Com Content Network
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors .
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
Spherical coordinates are also useful in analyzing systems that have some degree of symmetry about a point, including: volume integrals inside a sphere; the potential energy field surrounding a concentrated mass or charge; or global weather simulation in a planet's atmosphere.
The connection with spherical coordinates arises immediately if one uses the homogeneity to extract a factor of radial dependence from the above-mentioned polynomial of degree ; the remaining factor can be regarded as a function of the spherical angular coordinates and only, or equivalently of the orientational unit vector specified by these ...
The set () of smooth vector fields along is a vector space under pointwise vector addition and scalar multiplication. [18] One can also pointwise multiply a smooth vector field along γ {\displaystyle \gamma } by a smooth function f : [ 0 , 1 ] → R {\displaystyle f:[0,1]\to \mathbb {R} } :
For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().
In particular, the three spatial Killing vector fields have exactly the same form as the three nontranslational Killing vector fields in a spherically symmetric chart on E 3; that is, they exhibit the notion of arbitrary Euclidean rotation about the origin or spherical symmetry.