Search results
Results From The WOW.Com Content Network
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
Given a subset S of R n, a vector field is represented by a vector-valued function V: S → R n in standard Cartesian coordinates (x 1, …, x n).If each component of V is continuous, then V is a continuous vector field.
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
The curl of a 3-dimensional vector field which only depends on 2 coordinates (say x and y) is simply a vertical vector field (in the z direction) whose magnitude is the curl of the 2-dimensional vector field, as in the examples on this page.
For instance, if the vector represents position with respect to an observer (position vector), then the coordinate system may be obtained from a system of rigid rods, or reference axes, along which the components v 1, v 2, and v 3 are measured. For a vector to represent a geometric object, it must be possible to describe how it looks in any ...
The pair (,) is typically called the hyperbolic plane and has Killing vector field (using standard coordinates). This should be intuitively clear since the covariant derivative ∇ ∂ x g {\displaystyle \nabla _{\partial _{x}}g} transports the metric tensor along an integral curve generated by the vector field (whose image is parallel to the x ...