Search results
Results From The WOW.Com Content Network
These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...
The pentagram map takes a given polygon, finds the intersections of the shortest diagonals of the polygon, and constructs a new polygon from these intersections. Richard Schwartz introduced the pentagram map for a general polygon in a 1992 paper [ 1 ] though it seems that the special case, in which the map is defined for pentagons only, goes ...
Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation (,) = with complex coefficients, its solutions in y, viewed as functions of x, may be expanded as Puiseux series in x that are convergent in some neighbourhood of 0.
In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.
A simple polygon is the boundary of a region of the plane that is called a solid polygon. The interior of a solid polygon is its body, also known as a polygonal region or polygonal area. In contexts where one is concerned only with simple and solid polygons, a polygon may refer only to a simple polygon or to a solid polygon.
A subdivision rule takes a tiling of the plane by polygons and turns it into a new tiling by subdividing each polygon into smaller polygons. It is finite if there are only finitely many ways that every polygon can subdivide. Each way of subdividing a tile is called a tile type. Each tile type is represented by a label (usually a letter).
Furthermore, for the case that is an arbitrary convex polygon, the global relation can be solved numerically in a straightforward way, for example using MATLAB. Also, for the case that is a convex polygon, the Fokas method constructs an integral representation in the Fourier complex plane. By using this representation together with the global ...
A geodesic polygon is a polygon whose sides are geodesics. It is analogous to a spherical polygon, whose sides are great circles. The area of such a polygon may be found by first computing the area between a geodesic segment and the equator, i.e., the area of the quadrilateral AFHB in Fig. 1 (Danielsen 1989). Once this area is known, the area ...