Search results
Results From The WOW.Com Content Network
Once released, a neurotransmitter enters the synapse and encounters receptors. Neurotransmitter receptors can either be ionotropic or g protein coupled. Ionotropic receptors allow for ions to pass through when agonized by a ligand. The main model involves a receptor composed of multiple subunits that allow for coordination of ion preference.
The release of a neurotransmitter is triggered by the arrival of a nerve impulse (or action potential) and occurs through an unusually rapid process of cellular secretion . Within the presynaptic nerve terminal, vesicles containing neurotransmitter are localized near the synaptic membrane.
The variations in the quantities of neurotransmitters released from the presynaptic neuron may play a role in regulating the effectiveness of synaptic transmission. In fact, the concentration of cytoplasmic calcium is involved in regulating the release of neurotransmitters from presynaptic neurons. [29]
It may occur via direct contact between cells (i.e., via gap junctions), as in an electrical synapse, but most commonly occurs via the vesicular release of neurotransmitters from the presynaptic axon terminal into the synaptic cleft, as in a chemical synapse. [2]
Neurotransmitters are released into a synapse in packaged vesicles called quanta. One quantum generates a miniature end plate potential (MEPP) which is the smallest amount of stimulation that one neuron can send to another neuron. [1] Quantal release is the mechanism by which most traditional endogenous neurotransmitters are transmitted ...
After being released into the synaptic cleft, neurotransmitters diffuse across the synapse where they are able to interact with receptors on the target cell. The effect of the neurotransmitter is dependent on the identity of the target cell's receptors present at the synapse.
In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel . Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell .
[2] [3] [4] When receptors in the postsynaptic membrane bind this neurotransmitter and open ion channels, information is transmitted between neurons (A) and neurons (B). [5] To generate an action potential in the postsynaptic neuron, many excitatory synapses must be active at the same time. [1]