When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  4. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    A common case is finding the inverse of a low-rank update A + UCV of A (where U only has a few columns and V only a few rows), or finding an approximation of the inverse of the matrix A + B where the matrix B can be approximated by a low-rank matrix UCV, for example using the singular value decomposition.

  5. Drazin inverse - Wikipedia

    en.wikipedia.org/wiki/Drazin_inverse

    The Drazin inverse of a matrix of index 0 or 1 is called the group inverse or {1,2,5}-inverse and denoted A #. The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix having a multiplicative inverse, that is, a matrix B such that AB = BA = I. Invertible matrices form the general linear group. Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have ...

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Integer matrix - Wikipedia

    en.wikipedia.org/wiki/Integer_matrix

    Invertibility of integer matrices is in general more numerically stable than that of non-integer matrices. The determinant of an integer matrix is itself an integer, and the adj of an integer Matrix is also integer Matrix, thus the numerically smallest possible magnitude of the determinant of an invertible integer matrix is one, hence where inverses exist they do not become excessively large ...