When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    In linear algebra, the Sherman–Morrison formula, named after Jack Sherman and Winifred J. Morrison, computes the inverse of a "rank-1 update" to a matrix whose inverse has previously been computed. [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)).

  4. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    Nonsingularity of the latter requires that B −1 exist since it equals B(I + VA −1 UB) and the rank of the latter cannot exceed the rank of B. [7] Since B is invertible, the two B terms flanking the parenthetical quantity inverse in the right-hand side can be replaced with (B −1) −1, which results in the original Woodbury identity.

  5. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    In mathematics, and in particular linear algebra, the Moore–Penrose inverse ⁠ + ⁠ of a matrix ⁠ ⁠, often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]

  6. Drazin inverse - Wikipedia

    en.wikipedia.org/wiki/Drazin_inverse

    The Drazin inverse of a matrix of index 0 or 1 is called the group inverse or {1,2,5}-inverse and denoted A #. The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P.

  7. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    Matrix multiplication also does not necessarily obey the cancellation law. If AB = AC and A ≠ 0, then one must show that matrix A is invertible (i.e. has det(A) ≠ 0) before one can conclude that B = C. If det(A) = 0, then B might not equal C, because the matrix equation AX = B will not have a unique solution for a non-invertible matrix A.

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix

  9. Gershgorin circle theorem - Wikipedia

    en.wikipedia.org/wiki/Gershgorin_circle_theorem

    This can be done by preconditioning: A matrix P such that P ≈ A −1 is constructed, and then the equation PAx = Pb is solved for x. Using the exact inverse of A would be nice but finding the inverse of a matrix is something we want to avoid because of the computational expense.