Search results
Results From The WOW.Com Content Network
Pseudocode resembles skeleton programs, which can be compiled without errors. Flowcharts, drakon-charts and Unified Modelling Language (UML) charts can be thought of as a graphical alternative to pseudocode, but need more space on paper. Languages such as bridge the gap between pseudocode and code written in programming languages.
In pseudocode the algorithm can be stated as: Begin 1) Objective function: (), = (,,...,); 2) Generate an initial population of fireflies (=,, …,);. 3) Formulate light intensity I so that it is associated with () (for example, for maximization problems, () or simply = ();) 4) Define absorption coefficient γ while (t < MaxGeneration) for i = 1 : n (all n fireflies) for j = 1 : i (n fireflies ...
The preprocessing phase, in pseudocode, is as follows (for an alphabet of 256 symbols, i.e., bytes): // Unlike the original, we use zero-based indices here. function preprocess ( pattern ) T := new table of 256 integers for i from 0 to 256 exclusive T [ i ] := length ( pattern ) for i from 0 to length ( pattern ) - 1 exclusive T [ pattern [ i ...
The pseudocode below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target". The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create computer-generated holograms .
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
The pseudocode below uses a function ccw: ccw > 0 if three points make a counter-clockwise turn, ccw < 0 if clockwise, and ccw = 0 if collinear. (In real applications, if the coordinates are arbitrary real numbers, the function requires exact comparison of floating-point numbers, and one has to beware of numeric singularities for "nearly ...
The running time of this algorithm when run on a polyline consisting of n – 1 segments and n vertices is given by the recurrence T(n) = T(i + 1) + T(n − i) + O where i = 1, 2,..., n − 2 is the value of index in the pseudocode. In the worst case, i = 1 or i = n − 2 at each recursive invocation yields a running time of O(n 2).