When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pseudocode - Wikipedia

    en.wikipedia.org/wiki/Pseudocode

    Pseudocode resembles skeleton programs, which can be compiled without errors. Flowcharts, drakon-charts and Unified Modelling Language (UML) charts can be thought of as a graphical alternative to pseudocode, but need more space on paper. Languages such as bridge the gap between pseudocode and code written in programming languages.

  3. Firefly algorithm - Wikipedia

    en.wikipedia.org/wiki/Firefly_algorithm

    In pseudocode the algorithm can be stated as: Begin 1) Objective function: (), = (,,...,); 2) Generate an initial population of fireflies (=,, …,);. 3) Formulate light intensity I so that it is associated with () (for example, for maximization problems, () or simply = ();) 4) Define absorption coefficient γ while (t < MaxGeneration) for i = 1 : n (all n fireflies) for j = 1 : i (n fireflies ...

  4. Boyer–Moore–Horspool algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore–Horspool...

    The preprocessing phase, in pseudocode, is as follows (for an alphabet of 256 symbols, i.e., bytes): // Unlike the original, we use zero-based indices here. function preprocess ( pattern ) T := new table of 256 integers for i from 0 to 256 exclusive T [ i ] := length ( pattern ) for i from 0 to length ( pattern ) - 1 exclusive T [ pattern [ i ...

  5. Gerchberg–Saxton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gerchberg–Saxton_algorithm

    The pseudocode below performs the GS algorithm to obtain a phase distribution for the plane "Source", such that its Fourier transform would have the amplitude distribution of the plane "Target". The Gerchberg-Saxton algorithm is one of the most prevalent methods used to create computer-generated holograms .

  6. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.

  8. Graham scan - Wikipedia

    en.wikipedia.org/wiki/Graham_scan

    The pseudocode below uses a function ccw: ccw > 0 if three points make a counter-clockwise turn, ccw < 0 if clockwise, and ccw = 0 if collinear. (In real applications, if the coordinates are arbitrary real numbers, the function requires exact comparison of floating-point numbers, and one has to beware of numeric singularities for "nearly ...

  9. Ramer–Douglas–Peucker algorithm - Wikipedia

    en.wikipedia.org/wiki/Ramer–Douglas–Peucker...

    The running time of this algorithm when run on a polyline consisting of n – 1 segments and n vertices is given by the recurrence T(n) = T(i + 1) + T(n − i) + O where i = 1, 2,..., n − 2 is the value of index in the pseudocode. In the worst case, i = 1 or i = n − 2 at each recursive invocation yields a running time of O(n 2).