Search results
Results From The WOW.Com Content Network
The antenna complex contains hundreds of chlorophyll molecules which funnel the excitation energy to the center of the photosystem. At the reaction center, the energy will be trapped and transferred to produce a high energy molecule. [2] The main function of PSII is to efficiently split water into oxygen molecules and protons.
The transfer of electrons from a donor molecule to an acceptor molecule can be spatially separated into a series of intermediate redox reactions. This is an electron transport chain (ETC). Electron transport chains often produce energy in the form of a transmembrane electrochemical potential gradient.
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]
Adenosine triphosphate (ATP) is a nucleoside triphosphate [2] that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" for intracellular energy transfer. [3]
When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule. This is above and to the right of the pair on the diagram and is coloured grey. The electron travels from the pheophytin molecule through two plastoquinone molecules, the first tightly bound, the second loosely bound.
[8] [9] [10] While obtaining these structures was in itself a great feat, they did not show the oxygen-evolving complex in full detail. In 2011 the OEC of PSII was resolved to a level of 1.9Å revealing five oxygen atoms serving as oxo bridges linking the five metal atoms and four water molecules bound to the Mn