Search results
Results From The WOW.Com Content Network
Multiplication in a finite field is multiplication modulo an irreducible reducing polynomial used to define the finite field. (I.e., it is multiplication followed by division using the reducing polynomial as the divisor—the remainder is the product.) The symbol "•" may be used to denote multiplication in a finite field.
Rarely used in modern mathematics without a horizontal bar delimiting the width of its argument (see the next item). For example, √2. √ (radical symbol) 1. Denotes square root and is read as the square root of. For example, +. 2. With an integer greater than 2 as a left superscript, denotes an n th root.
ld – binary logarithm (log 2). (Also written as lb.) lsc – lower semi-continuity. lerp – linear interpolation. [5] lg – common logarithm (log 10) or binary logarithm (log 2). LHS – left-hand side of an equation. Li – offset logarithmic integral function. li – logarithmic integral function or linearly independent.
Example: 100P can be written as 2(2[P + 2(2[2(P + 2P)])]) and thus requires six point double operations and two point addition operations. 100P would be equal to f(P, 100). This algorithm requires log 2 (d) iterations of point doubling and addition to compute the full point multiplication. There are many variations of this algorithm such as ...
The constants R mod N and R 3 mod N can be generated as REDC(R 2 mod N) and as REDC((R 2 mod N)(R 2 mod N)). The fundamental operation is to compute REDC of a product. When standalone REDC is needed, it can be computed as REDC of a product with 1 mod N. The only place where a direct reduction modulo N is necessary is in the precomputation of R ...
Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.