Search results
Results From The WOW.Com Content Network
This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .
The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analogue of Euler's polyhedral formula: + = where N k denotes the number of k-faces in the polytope (a vertex is a 0-face, an edge is a 1-face, etc.).
A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them. If the vertices are not constrained to a sphere, the polyhedron can be constructed with planar equilateral (but not in general ...
The five Platonic solids have an Euler characteristic of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.
The work was lost, and not rediscovered until the 19th century. One of its contributions was Descartes' theorem on total angular defect, which is closely related to Euler's polyhedral formula. [81] Leonhard Euler, for whom the formula is named, introduced it in 1758 for convex polyhedra more generally, albeit with an incorrect proof. [82]
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
From the fact that each facet of a three-dimensional polyhedron has at least three edges, it follows by double counting that 2e ≥ 3f, and using this inequality to eliminate e and f from Euler's formula leads to the further inequalities e ≤ 3v − 6 and f ≤ 2v − 4. By duality, e ≤ 3f − 6 and v ≤ 2f − 4.
Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula + = for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press , with a paperback edition in 2012.