Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
It cannot be used if there are zero or close-to-zero values (which sometimes happens, for example in demand data) because there would be a division by zero or values of MAPE tending to infinity. [ 8 ]
In IEEE arithmetic, division of 0/0 or ∞/∞ results in NaN, but otherwise division always produces a well-defined result. Dividing any non-zero number by positive zero (+0) results in an infinity of the same sign as the dividend. Dividing any non-zero number by negative zero (−0
Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties.
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
where p = 0.3275911, a 1 = 0.254829592, a 2 = −0.284496736, a 3 = 1.421413741, a 4 = −1.453152027, a 5 = 1.061405429 All of these approximations are valid for x ≥ 0 . To use these approximations for negative x , use the fact that erf x is an odd function, so erf x = −erf(− x ) .
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
For a Type I error, it is shown as α (alpha) and is known as the size of the test and is 1 minus the specificity of the test. This quantity is sometimes referred to as the confidence of the test, or the level of significance (LOS) of the test. For a Type II error, it is shown as β (beta) and is 1 minus the power or 1 minus the sensitivity of ...