Search results
Results From The WOW.Com Content Network
A visual memory tool can replace the FOIL mnemonic for a pair of polynomials with any number of terms. Make a table with the terms of the first polynomial on the left edge and the terms of the second on the top edge, then fill in the table with products of multiplication. The table equivalent to the FOIL rule looks like this:
Since that work, Pan has returned to symbolic and numeric computation and to an earlier theme of his research, computations with polynomials. He developed fast algorithms for the numerical computation of polynomial roots, and, with Bernard Mourrain, algorithms for multivariate polynomials based on their relations to structured matrices. [5]
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
The Bernoulli polynomials may be obtained as a limiting case of the periodic zeta function, taking s to be an integer, and thus the multiplication theorem there can be derived from the above. Similarly, substituting q = log z leads to the multiplication theorem for the polylogarithm.
At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree. In the case of a non-square-free polynomial, if neither a nor b is a multiple root of p, then V(a) − V(b) is the number of distinct real roots of P.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.