Search results
Results From The WOW.Com Content Network
In a computer with a full 32-bit by 32-bit multiplier, for example, one could choose B = 2 31 and store each digit as a separate 32-bit binary word. Then the sums x 1 + x 0 and y 1 + y 0 will not need an extra binary word for storing the carry-over digit (as in carry-save adder ), and the Karatsuba recursion can be applied until the numbers to ...
On currently available processors, a bit-wise shift instruction is usually (but not always) faster than a multiply instruction and can be used to multiply (shift left) and divide (shift right) by powers of two. Multiplication by a constant and division by a constant can be implemented using a sequence of shifts and adds or subtracts. For ...
The instruction computes the 128-bit carry-less product of two 64-bit values. The destination is a 128-bit XMM register. The source may be another XMM register or memory. An immediate operand specifies which halves of the 128-bit operands are multiplied. Mnemonics specifying specific values of the immediate operand are also defined:
The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation.Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. [1]
Here we consider operations over polynomials and n denotes their degree; for the coefficients we use a unit-cost model, ignoring the number of bits in a number. In practice this means that we assume them to be machine integers.
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
Multiplying polynomials [ edit ] When using algebra tiles to multiply a monomial by a monomial , the student must first set up a rectangle where the length of the rectangle is the one monomial and then the width of the rectangle is the other monomial , similar to when one multiplies integers using algebra tiles.