When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    If angle C is obtuse then for sides a, b, and c we have [4]: p.1, #74 < + <, with the left inequality approaching equality in the limit only as the apex angle of an isosceles triangle approaches 180°, and with the right inequality approaching equality only as the obtuse angle approaches 90°.

  3. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  5. Disphenoid - Wikipedia

    en.wikipedia.org/wiki/Disphenoid

    Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. Some tetragonal disphenoids will form honeycombs. The disphenoid whose four vertices are (-1, 0, 0), (1, 0, 0), (0, 1, 1), and (0, 1, -1) is such a disphenoid. [13] [14] Each of its four faces is an isosceles triangle with edges of lengths √ 3, √ 3, and 2.

  6. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  7. Golden triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Golden_triangle_(mathematics)

    A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:

  8. Stewart's theorem - Wikipedia

    en.wikipedia.org/wiki/Stewart's_theorem

    Diagram of Stewart's theorem. Let a, b, c be the lengths of the sides of a triangle. Let d be the length of a cevian to the side of length a.If the cevian divides the side of length a into two segments of length m and n, with m adjacent to c and n adjacent to b, then Stewart's theorem states that + = (+).

  9. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);