When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition, and won the ImageNet Large Scale Visual Recognition Challenge of that year. [2] [3]

  3. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Residual connections, or skip connections, refers to the architectural motif of +, where is an arbitrary neural network module. This gives the gradient of ∇ f + I {\displaystyle \nabla f+I} , where the identity matrix do not suffer from the vanishing or exploding gradient.

  4. List of HTTP status codes - Wikipedia

    en.wikipedia.org/wiki/List_of_HTTP_status_codes

    The Internet Assigned Numbers Authority (IANA) maintains the official registry of HTTP status codes. [2] All HTTP response status codes are separated into five classes or categories. The first digit of the status code defines the class of response, while the last two digits do not have any classifying or categorization role.

  5. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    The codebase for AlexNet was released under a BSD license, and had been commonly used in neural network research for several subsequent years. [ 20 ] [ 17 ] In one direction, subsequent works aimed to train increasingly deep CNNs that achieve increasingly higher performance on ImageNet.

  6. Minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Minimal_residual_method

    Both minimize the 2-norm of the residual and do the same calculations in exact arithmetic when the matrix is symmetric. MINRES is a short-recurrence method with a constant memory requirement, whereas GMRES requires storing the whole Krylov space, so its memory requirement is roughly proportional to the number of iterations.

  7. Flow network - Wikipedia

    en.wikipedia.org/wiki/Flow_network

    The residual capacity of an arc e with respect to a pseudo-flow f is denoted c f, and it is the difference between the arc's capacity and its flow. That is, c f (e) = c(e) - f(e). From this we can construct a residual network, denoted G f (V, E f), with a capacity function c f which models the amount of available capacity on the set of arcs in ...

  8. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  9. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...