When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    This solution gives the primal variables as functions of the Lagrange multipliers, which are called dual variables, so that the new problem is to maximize the objective function with respect to the dual variables under the derived constraints on the dual variables (including at least the nonnegativity constraints). In general given two dual ...

  4. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...

  5. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    The method penalizes violations of inequality constraints using a Lagrange multiplier, which imposes a cost on violations. These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem.

  6. Pontryagin's maximum principle - Wikipedia

    en.wikipedia.org/wiki/Pontryagin's_maximum_Principle

    The constraints on the system dynamics can be adjoined to the Lagrangian by introducing time-varying Lagrange multiplier vector , whose elements are called the costates of the system. This motivates the construction of the Hamiltonian H {\displaystyle H} defined for all t ∈ [ 0 , T ] {\displaystyle t\in [0,T]} by:

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a global maximum or minimum over the ...

  8. Score test - Wikipedia

    en.wikipedia.org/wiki/Score_test

    Since function maximization subject to equality constraints is most conveniently done using a Lagrangean expression of the problem, the score test can be equivalently understood as a test of the magnitude of the Lagrange multipliers associated with the constraints where, again, if the constraints are non-binding at the maximum likelihood, the ...

  9. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.