Search results
Results From The WOW.Com Content Network
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...
In mathematics, the Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers, card shuffling.
In mathematics, an inequation is a statement that an inequality holds between two values. [1] [2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation. Some examples of inequations are:
This curve is called the "line of perfect inequality." The Gini coefficient is the ratio of the area between the line of perfect equality and the observed Lorenz curve to the area between the line of perfect equality and the line of perfect inequality. The higher the coefficient, the more unequal the distribution is.
Hardy's inequality is an inequality in mathematics, named after G. H. Hardy. Its discrete version states that if a 1 , a 2 , a 3 , … {\displaystyle a_{1},a_{2},a_{3},\dots } is a sequence of non-negative real numbers , then for every real number p > 1 one has