Search results
Results From The WOW.Com Content Network
White light is dispersed by a glass prism into the colors of the visible spectrum. The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light (or simply light).
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. [1] Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz.
The wavelength of visible light ranges from 390 to 700 nm. [4] The absorption spectrum of a chemical element or chemical compound is the spectrum of frequencies or wavelengths of incident radiation that are absorbed by the compound due to electron transitions from a lower to a higher energy state.
The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
The wavelength of light is then selected by the slit on the upper right corner. An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify materials. [1]
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics , absorption of electromagnetic radiation is how matter (typically electrons bound in atoms ) takes up a photon 's energy —and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy ).