Search results
Results From The WOW.Com Content Network
Neuroplasticity, also known as neural plasticity or just plasticity, is the ability of neural networks in the brain to change through growth and reorganization. Neuroplasticity refers to the brain's ability to reorganize and rewire its neural connections, enabling it to adapt and function in ways that differ from its prior state.
Brain plasticity science is the study of a physical process. Gray matter can actually shrink or thicken; neural connections can be forged and refined or weakened and severed.
Some of the most pervading examples of this can be seen through the development of the visual cortex in addition to the acquisition of language as a result of developmental plasticity during the critical period. [8] [32] A lesser known example, however, remains the critical development of respiratory control during developmental periods. At ...
Hebbian theory is a neuropsychological theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity , the adaptation of brain neurons during the learning process.
Activity-dependent plasticity is seen in the primary visual cortex, a region of the brain that processes visual stimuli and is capable of modifying the experienced stimuli based on active sensing and arousal states. It is known that synaptic communication trends between excited and depressed states relative to the light/dark cycle.
Neuroconstructivism is a theory that states that phylogenetic developmental processes such as gene–gene interaction, gene–environment interaction [1] and, crucially, ontogeny all play a vital role in how the brain progressively sculpts itself and how it gradually becomes specialized over developmental time.
Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory (see Hebbian theory). Plastic change often results from the alteration of the number of neurotransmitter receptors located on a synapse. [2]
For example, Jaak Panksepp, an affective neuroscientist, point to the "remarkable degree of neocortical plasticity within the human brain, especially during development" and states that "the developmental interactions among ancient special-purpose circuits and more recent general-purpose brain mechanisms can generate many of the "modularized ...