When.com Web Search

  1. Ads

    related to: examples of points and lines in math problems with solutions 5th year high school

Search results

  1. Results From The WOW.Com Content Network
  2. Configuration (geometry) - Wikipedia

    en.wikipedia.org/wiki/Configuration_(geometry)

    Configurations (4 3 6 2) (a complete quadrangle, at left) and (6 2 4 3) (a complete quadrilateral, at right).. In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points.

  3. Locus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Locus_(mathematics)

    Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.

  4. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: [2] Given a point and a line, there is a unique line which contains the point and is parallel to the line.

  5. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    A spread of a projective space is a partition of its points into disjoint lines, and a packing is a partition of the lines into disjoint spreads. In PG(3,2), a spread would be a partition of the 15 points into 5 disjoint lines (with 3 points on each line), thus corresponding to the arrangement of schoolgirls on a particular day.

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    In geometry, the objects are things like points, lines and planes while a fundamental relationship is that of incidence – of one object meeting or joining with another. The terms themselves are undefined. Hilbert once remarked that instead of points, lines and planes one might just as well talk of tables, chairs and beer mugs. [3]

  7. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point. It immediately follows that the algebraic condition for three lines, [ a 1 , b 1 , c 1 ], [ a 2 , b 2 , c 2 ], [ a 3 , b 3 , c 3 ] to be concurrent is that the determinant,

  8. Mass point geometry - Wikipedia

    en.wikipedia.org/wiki/Mass_point_geometry

    All problems that can be solved using mass point geometry can also be solved using either similar triangles, vectors, or area ratios, [2] but many students prefer to use mass points. Though modern mass point geometry was developed in the 1960s by New York high school students, [ 3 ] the concept has been found to have been used as early as 1827 ...

  9. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.