Ad
related to: k matrix scattering theory explained easy for students
Search results
Results From The WOW.Com Content Network
In scattering theory, the S-matrix is an operator mapping free particle in-states to free particle out-states (scattering channels) in the Heisenberg picture. This is very useful because often we cannot describe the interaction (at least, not the most interesting ones) exactly.
Both the scattering and annihilation diagrams contribute to the transition matrix element. By letting k and k' represent the four-momentum of the positron, while letting p and p' represent the four-momentum of the electron, and by using Feynman rules one can show the following diagrams give these matrix elements:
The Scattering transfer parameters or T-parameters of a 2-port network are expressed by the T-parameter matrix and are closely related to the corresponding S-parameter matrix. However, unlike S parameters, there is no simple physical means to measure the T parameters in a system, sometimes referred to as Youla waves.
Crossing states that the same formula that determines the S-matrix elements and scattering amplitudes for particle to scatter with and produce particle and will also give the scattering amplitude for + ¯ + to go into , or for ¯ to scatter with to produce + ¯. The only difference is that the value of the energy is negative for the antiparticle.
Scattering theory is the theory of scattering events which can occur as well in quantum mechanics, classical electrodynamics or acoustics. The associated general mathematical frame bears the same name though its range of application may be larger.
In scattering theory, a scattering channel is a quantum state of the colliding system before or after the collision (). The Hilbert space spanned by the states before collision (in states) is equal to the space spanned by the states after collision (out states) which are both Fock spaces if there is a mass gap .
In computational electromagnetics, the scattering-matrix method (SMM) is a numerical method used to solve Maxwell's equations, [1] related to the transfer-matrix method.
The simple relation 1/τ= Σ k',k S k'k makes this a useful equation for characterizing material transport properties when used in conjunction with σ = ne 2 τ /m* and Matthiessen's rule to incorporate other scattering processes. The value of S k'k is primarily determined by the interaction parameter, H'. This term is different depending on ...