When.com Web Search

  1. Ads

    related to: vieta's formulas proof set

Search results

  1. Results From The WOW.Com Content Network
  2. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are then useful because they provide relations between the roots without having to compute them. For polynomials over a commutative ring that is not an integral domain, Vieta's formulas are only valid when a n {\displaystyle a_{n}} is not a zero-divisor and P ( x ) {\displaystyle P(x)} factors as a n ( x − r 1 ) ( x − r 2 ) …

  3. Vieta jumping - Wikipedia

    en.wikipedia.org/wiki/Vieta_jumping

    Replace some a i by a variable x in the formulas, and obtain an equation for which a i is a solution. Using Vieta's formulas, show that this implies the existence of a smaller solution, hence a contradiction. Example. Problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a 2 + b 2. Prove that ⁠ a 2 + b 2 / ab + 1 ...

  4. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Elementary_symmetric...

    The characteristic polynomial of a square matrix is an example of application of Vieta's formulas. The roots of this polynomial are the eigenvalues of the matrix . When we substitute these eigenvalues into the elementary symmetric polynomials, we obtain – up to their sign – the coefficients of the characteristic polynomial, which are ...

  5. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    Viète's formula, as printed in Viète's Variorum de rebus mathematicis responsorum, liber VIII (1593). In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant π: = + + + It can also be represented as = = ⁡ +.

  6. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    By Vieta's formulas, s 0 is known to be zero in the case of a depressed cubic, and − ⁠ b / a ⁠ for the general cubic. So, only s 1 and s 2 need to be computed. They are not symmetric functions of the roots (exchanging x 1 and x 2 exchanges also s 1 and s 2 ), but some simple symmetric functions of s 1 and s 2 are also symmetric in the ...

  7. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    A two-sum formula can be obtained using one of the symmetric formulae for Stirling numbers in conjunction with the explicit formula for Stirling numbers of the second kind. [ n k ] = ∑ j = n 2 n − k ( j − 1 k − 1 ) ( 2 n − k j ) ∑ m = 0 j − n ( − 1 ) m + n − k m j − k m !

  8. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Vieta's formulas imply that every element of K is a symmetric function of the , and is thus fixed by all these automorphisms. It follows that the Galois group Gal ⁡ ( H / K ) {\displaystyle \operatorname {Gal} (H/K)} is the symmetric group S n . {\displaystyle {\mathcal {S}}_{n}.}

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    It follows by Vieta's formulas that x and y must be roots of the quadratic equation + = ; its = = > (≠ 0, otherwise c would be the square of a), hence x and y must be + and . Thus x and y are rational if and only if d = a 2 − c {\displaystyle d={\sqrt {a^{2}-c}}~} is a rational number.