Search results
Results From The WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
At time t, let a mass m travel at a velocity v, meaning the initial momentum of the system is p 1 = m v {\displaystyle \mathbf {p} _{\mathrm {1} }=m\mathbf {v} } Assuming u to be the velocity of the ablated mass d m with respect to the ground, at a time t + d t the momentum of the system becomes
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.
All acceleration requires an exchange of momentum, which can be thought of as the "unit of movement". Momentum is related to mass and velocity, as given by the formula P = mv, where P is the momentum, m the mass, and v the velocity. The velocity of a body is easily changeable, but in most cases the mass is not, which makes it important.
F = total force acting on the center of mass m = mass of the body I 3 = the 3×3 identity matrix a cm = acceleration of the center of mass v cm = velocity of the center of mass τ = total torque acting about the center of mass I cm = moment of inertia about the center of mass ω = angular velocity of the body α = angular acceleration of the body
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]